2,399 research outputs found

    A new source detection algorithm using FDR

    Get PDF
    The False Discovery Rate (FDR) method has recently been described by Miller et al (2001), along with several examples of astrophysical applications. FDR is a new statistical procedure due to Benjamini and Hochberg (1995) for controlling the fraction of false positives when performing multiple hypothesis testing. The importance of this method to source detection algorithms is immediately clear. To explore the possibilities offered we have developed a new task for performing source detection in radio-telescope images, Sfind 2.0, which implements FDR. We compare Sfind 2.0 with two other source detection and measurement tasks, Imsad and SExtractor, and comment on several issues arising from the nature of the correlation between nearby pixels and the necessary assumption of the null hypothesis. The strong suggestion is made that implementing FDR as a threshold defining method in other existing source-detection tasks is easy and worthwhile. We show that the constraint on the fraction of false detections as specified by FDR holds true even for highly correlated and realistic images. For the detection of true sources, which are complex combinations of source-pixels, this constraint appears to be somewhat less strict. It is still reliable enough, however, for a priori estimates of the fraction of false source detections to be robust and realistic.Comment: 17 pages, 7 figures, accepted for publication by A

    Efficient and accurate three dimensional Poisson solver for surface problems

    Full text link
    We present a method that gives highly accurate electrostatic potentials for systems where we have periodic boundary conditions in two spatial directions but free boundary conditions in the third direction. These boundary conditions are needed for all kind of surface problems. Our method has an O(N log N) computational cost, where N is the number of grid points, with a very small prefactor. This Poisson solver is primarily intended for real space methods where the charge density and the potential are given on a uniform grid.Comment: 6 pages, 2 figure

    Image Coaddition with Temporally Varying Kernels

    Full text link
    Large, multi-frequency imaging surveys, such as the Large Synaptic Survey Telescope (LSST), need to do near-real time analysis of very large datasets. This raises a host of statistical and computational problems where standard methods do not work. In this paper, we study a proposed method for combining stacks of images into a single summary image, sometimes referred to as a template. This task is commonly referred to as image coaddition. In part, we focus on a method proposed in previous work, which outlines a procedure for combining stacks of images in an online fashion in the Fourier domain. We evaluate this method by comparing it to two straightforward methods through the use of various criteria and simulations. Note that the goal is not to propose these comparison methods for use in their own right, but to ensure that additional complexity also provides substantially improved performance

    Myrtucommulone from Myrtus communis exhibits potent anti-inflammatory effectiveness in vivo.

    Get PDF
    Myrtucommulone a nonprenylated acylphloroglucinol contained in the leaves of myrtle (Myrtus communis), has been reported to suppress the biosynthesis of eicosanoids by inhibition of 5-lipoxygenase and cyclooxygenase-1 in vitro and to inhibit the release of elastase and the formation of reactive oxygen species in activated polymorphonuclear leukocytes. Here, in view of the ability of MC to suppress typical proinflammatory cellular responses in vitro, we have investigated the effects of MC in in vivo models of inflammation. MC was administered to mice intraperitoneally, and paw edema and pleurisy were induced by the subplantar and intrapleural injection of carrageenan, respectively. MC (0.5, 1.5, and 4.5 mg/kg i.p.) reduced the development of mouse carrageenan-induced paw edema in a dose-dependent manner. Moreover, MC (4.5 mg/kg i.p. 30 min before and after carrageenan) exerted anti-inflammatory effects in the pleurisy model. In particular, 4 h after carrageenan injection in the pleurisy model, MC reduced: 1) the exudate volume and leukocyte numbers; 2) lung injury (histological analysis) and neutrophil infiltration (myeloperoxidase activity); 3) the lung intercellular adhesion molecule-1 and P-selectin immunohistochemical localization; 4) the cytokine levels (tumor necrosis factor-α and interleukin-1 β in the pleural exudate and their immunohistochemical localization in the lung; 5) the leukotriene B 4, but not prostaglandin E2, levels in the pleural exudates; and 6) lung peroxidation (thiobarbituric acid-reactant substance) and nitrotyrosine and poly (ADP-ribose) immunostaining. In conclusion, our results demonstrate that MC exerts potent anti-inflammatory effects in vivo and offer a novel therapeutic approach for the management of acute inflammation. Copyright © 2009 by The American Society for Pharmacology and Experimental Therapeutics

    Critical Behaviour of Non-Equilibrium Phase Transitions to Magnetically Ordered States

    Full text link
    We describe non-equilibrium phase transitions in arrays of dynamical systems with cubic nonlinearity driven by multiplicative Gaussian white noise. Depending on the sign of the spatial coupling we observe transitions to ferromagnetic or antiferromagnetic ordered states. We discuss the phase diagram, the order of the transitions, and the critical behaviour. For global coupling we show analytically that the critical exponent of the magnetization exhibits a transition from the value 1/2 to a non-universal behaviour depending on the ratio of noise strength to the magnitude of the spatial coupling.Comment: 4 pages, 5 figure

    Mesoscopic description of the annealed Ising model and Multiplicative noise

    Full text link
    A new type of Langevin equation exhibiting a non trivial phase transition associated with the presence of multiplicative noise is introduced. The equation is derived as a mesoscopic representation of the microscopic annealed Ising model (AIM) proposed by Thorpe and Beeman, and reproduces perfectly its basic phenomenology. The AIM exhibits a non-trivial behavior as the temperature is increased, in particular it presents a disorder-to-order phase transition at low temperatures, and a order-to-disorder transition at higher temperatures. This behavior resembles that of some Langevin equations with multiplicative noise, which exhibit also two analogous phase transitions as the noise-amplitude is increased. By comparing the standard models for noise-induced transitions with our new Langevin equation we elucidate that the mechanisms controlling the disorder-to-order transitions in both of them are essentially different, even though for both of them the presence of multiplicative noise is a key ingredient.Comment: Submitted to Phys. Rev.

    Mixed culture of commensal bacteria reduces E. coli in nursery pigs

    Get PDF
    The purpose of the present study was to use field trials to evaluate the efficacy of a porcine-derived, defined culture (RPCF) of commensal bacteria for prevention of clinical disease from enterotoxigenic strains of Escherichia coli in weaned pigs. Neonates (\u3c 24 h old) were orally administered RPCF and were monitored throughout the post-weaning nursery period on five geographically separated farms. The farms had a history of high mortality from F-18 strains of E. coli. RPCF-treated pigs had reduced mortality, morbidity, and medication costs from E. coli compared to untreated pigs. Although experimental, RPCF may become an effective control procedure for enterotoxigenic E. coli
    corecore